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All-inorganic lead halide perovskite nanocrystals (LHP
NCs) exhibit high photoluminescence quantum yield
(PLQY) and possess a narrow emission bandwidth that
covers the entire visible spectral range. Moreover, LHP
NCs display exceptional tolerance to surface defects.

In the work of Manna et al.1, they aimed to shed light on
the CsPbCl3 to CsPbI3 halide exchange process within
nanocrystals (NCs) by investigating its underlying
mechanism and intermediate stages.
However, TEM images captured at various stages of the
exchange process, demonstrate that the reaction has
minimal influence on the morphology of the NCs (figure
1).

Figure 1. Bright field TEM images collected on NCs
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MACHINE LEARNING ARCHITECTURE
Convolutional networks (CNN) are typically used for classification tasks, where a single class label is
assigned to an entire image.
In this work, I used a modified and extended architecture known as the "fully convolutional network." It
combines contracting and upsampling layers to increase output resolution and enhance localization.
The architecture includes many feature channels in the upsampling part to propagate context
information to higher-resolution layers, resulting in a u-shaped architecture (Figure 3). The network
doesn't employ fully connected layers and only uses the valid part of each convolution, ensuring that
the segmentation map only contains pixels with full context available in the input image.
My architecture is composed by four encoding blocks, each with two convolution layer and one of
MaxPooling, one layer of dropout, and other four decoding blocks, analogous to the encoding one.
The activation function for each block is the rectified linear unit (ReLu) and the regularizing factor is
0.01.

Figure 3. U-Net architecture

The initial dataset comprises 12 High-angle Annular Dark-field (HAADF) images of NCs that were previously collected. To
increase the number of data available, I rotate some of the picture to obtain a dataset of 22 HAADF images. Since the
CNN is space-invariant, this process enhances variability without introducing redundancy. For each image, I generated a
binary mask using the ImageJ software.

To evaluate the model's performance, I conducted a K-fold cross-validation by dividing the dataset into 5 folds (figure 4).

The model calculates a probability for each pixel in the tested image, indicating the likelihood that the pixel belongs to a
NC based on its grayscale value. After conducting several experiments, I determined the optimal threshold for the
probability within a range of 0.70 to 0.80, ultimately selecting 0.75 as the threshold. Pixels with a probability exceeding
this threshold are classified as belonging to a NC.

Once the model generates the mask, I compared it with the previously generated mask and assessed its performance
using the Jaccard Similarity coefficient (figure 5).
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Figure 6. Comparison between ImageJ
mask (up) and U-net mask (down)

TECHNIQUE USED TO COLLECT DATA

In scanning transmission electron microscopy (STEM), a multitude of signals is available, each providing unique insights into the specimen. A powerful technique
known as high-angle annular dark-field (HAADF) imaging leverages the high-angle Rutherford-scattered electrons (typically >5°) to reveal compositional contrasts
with far greater sensitivity than X-ray imaging2.

Figure 2.
A) Different types of scattered electrons.
B) HAADF Detector in TEM.
C) Molybdenum Oxide HAADF
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Analyzing Transmission Electron Microscopy (TEM) images can be a time-consuming and sometimes non-trivial task. The ability to identify individual nanostructures is crucial, because it allows for the efficient processing of large
datasets, often containing tens or hundreds nanocrystals per sample, and for the extraction of valuable information concerning material composition. Furthermore, high-throughput methods enable us to gather statistically
significant data, which are essential for assessing a methodology. Machine learning (ML) allows us to perform this type of analysis because it can learn from data and automate the entire workflow.

In this study, my focus was on distinguishing nanostructures (referred to as NCs) from the background using ML and basing on greyscale analysis.

Figure 4. Workflow of the project
Figure 5. Jaccard Similarity
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